2-modified characteristic Fredholm determinants, Hill’s method, and the periodic Evans function of Gardner

نویسنده

  • Kevin Zumbrun
چکیده

Using the relation established by Johnson–Zumbrun between Hill’s method of aproximating spectra of periodic-coefficient ordinary differential operators and a generalized periodic Evans function given by the 2-modified characteristic Fredholm determinant of an associated Birman–Schwinger system, together with a Volterra integral computation introduced by Gesztesy–Makarov, we give an explicit connection between the generalized Birman–Schwinger-type periodic Evans function and the standard Jost function-type periodic Evans function defined by Gardner in terms of the fundamental solution of the eigenvalue equation written as a first-order system. This extends to a large family of operators the results of Gesztesy–Makarov for scalar Schrödinger operators and of Gardner for vector-valued second-order elliptic operators, in particular recovering by independent argument the fundamental result of Gardner that the zeros of the Evans function agree in location and (algebraic) multiplicity with the periodic eigenvalues of the associated operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derivatives of (modified) Fredholm Determinants and Stability of Standing and Traveling Waves

Continuing a line of investigation initiated in [11] exploring the connections between Jost and Evans functions and (modified) Fredholm determinants of Birman–Schwinger type integral operators, we here examine the stability index, or sign of the first nonvanishing derivative at frequency zero of the characteristic determinant, an object that has found considerable use in the study by Evans func...

متن کامل

ar X iv : m at h / 05 11 37 2 v 1 [ m at h . D S ] 1 5 N ov 2 00 5 EVANS FUNCTIONS , JOST FUNCTIONS , AND FREDHOLM DETERMINANTS

The principal results of this paper consist of an intrinsic definition of the Evans function in terms of newly introduced generalized matrix-valued Jost solutions for general first-order matrix-valued differential equations on the real line, and a proof of the fact that the Evans function, a finite-dimensional determinant by construction, coincides with a modified Fredholm determinant associate...

متن کامل

Derivatives of the Evans function and (modified) Fredholm determinants for first order systems

The Evans function is a Wronskian type determinant used to detect point spectrum of differential operators obtained by linearizing PDEs about special solutions such as traveling waves, etc. This work is a sequel to the paper “Derivatives of (modified) Fredholm determinants and stability of standing and traveling waves”, published by F. Gesztesy, K. Zumbrun and the second author in J. Math. Pure...

متن کامل

Convergence of Hill's Method for Nonselfadjoint Operators

By the introduction of a generalized Evans function defined by an appropriate 2-modified Fredholm determinant, we give a simple proof of convergence in location and multiplicity of Hill’s method for numerical approximation of spectra of periodiccoefficient ordinary differential operators. Our results apply to operators of nondegenerate type, under the condition that the principal coefficient ma...

متن کامل

Evans Functions, Jost Functions, and Fredholm Determinants

The principal results of this paper consist of an intrinsic definition of the Evans function in terms of newly introduced generalized matrix-valued Jost solutions for general first-order matrix-valued differential equations on the real line, and a proof of the fact that the Evans function, a finite-dimensional determinant by construction, coincides with a modified Fredholm determinant associate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010